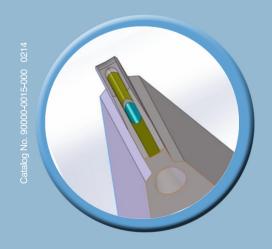
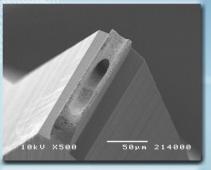
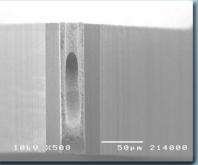
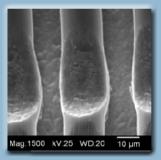


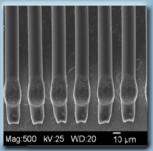
UFP® Wedge (Ultra-Fine Pitch)

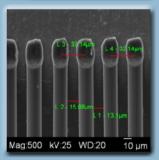

MPP's UFP® wedge was developed to provide a wire - bonding solution for a very narrow pitch, lower than 45μ, using thicker wire.


As the demand for increasing wires amount and on smaller chip, the need for a tools that can do the "job" arises, where current ball bonding solution is limited.


MPP's**UFP® wedge** bonding tool is a unique proven (patented) solution featuring:

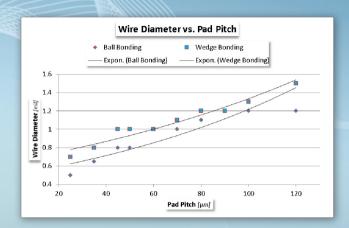

- Ultra-Fine Pitch of less than 45µ
- Thicker Wire compare to ball bonding → higher currentfor the same pitch
- Low Loop smaller package
- Narrow front width (W)
- Higher tip accuracy

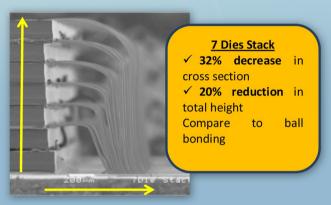

MPP's UFP wedge tools can be customized to your application Applicable for **Al** and **Au** wires

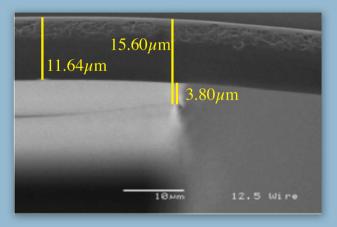


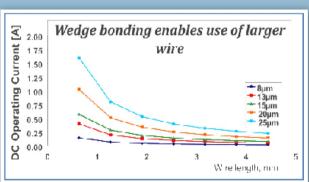
UFP® Wedge bonding tool

Increasing wires amount per same area of chip, requires reduction of the pad to pad pitch, and the need for smaller bonding tools arises. However, maintaining relatively thicker wire on a smaller pitch requires reducing the tool wall thickness, and this can't be done with current tools solutions, as in Capillary.


MPP's production processes & XP material of the UFP® wedge enables reducing the wall of the tool and thus using a relatively thicker wire. This figure shows the advantage of UFP® wedge over capillary when using thicker wire on same pitch.


Using thicker wire with **UFP® wedge** enables to perform lower loops on wire bonding, due to wire stiffness, and also a much smaller overall cross-section. This allows the design and manufacturing of much smaller packaging.


UFP® wedge bonding can also bond very steep loops, close to the die edge, result in the decrease of the package cross section.


MPP's **UFP®** wedge bonding tool is made of MPP's **XP** Material maintaining wedge strength for bonding loads on small wall thickness.

Higher Current Carrying Capacity Using **UFP®** wedge enables a greater current carrying capacity.

